Human Machine Systems and Digital Twin Technologies

IEEE SMC Society / SMST, University of Central Florida Joint Workshop

Date: 16 February 2024

Room 233, Partnership III, 3100 Technology Parkway, Orlando, 32826 FL, USA

Overview:

-400

This interactive workshop is a collaboration between IEEE Systems, Man, Cybernetics (SMC), and the Institute of Simulation and Training, School of Modeling, Simulation, and Training, at the University of Florida. The workshop explores the intersection of Human-Machine Systems (HMS) and Digital Twin Technologies, providing participants with a comprehensive understanding of how these realms converge to shape the future of industries. As digital transformation accelerates, the synergy between human-machine interactions and the creation of digital twins has become a critical aspect of innovation and efficiency across various domains.

The mission of the Systems, Man, and Cybernetics Society is to serve the interests of its members and the community at large by promoting the theory, practice, and interdisciplinary aspects of systems science and engineering, human-machine systems, and cybernetics. It is accomplished through conferences, publications, and other activities that contribute to the professional needs of its members.

This joint workshop aims to nurture a network of universities, research institutions, companies, and organizations from all over the world with educational, and research profiles that match the IEEE Systems, Man, and Cybernetics Society (SMCS) fields of interest: systems science and engineering, human-machine systems, and cybernetics. In addition, the UCF's Digital Twin Strategic Initiative is an opportunity to explore new dimensions and future collaborations in education, training, and research areas.

Human-machine systems cover integrated human/machine systems at multiple scales and include areas such as human/machine interaction; cognitive ergonomics and engineering; assistive/companion technologies; human/machine system modeling, testing, and evaluation; and fundamental issues of measurement and modeling of human-centered phenomena in engineered systems.

Key Takeaways:

- A deep understanding of the principles behind Human-Machine Systems and Digital Twins.
- Practical insights into integrating these technologies for improved system performance.
- Knowledge of real-world applications and case studies showcasing successful implementations.

Workshop Chairs:

Professor Saeid Nahavandi

(VP IEEE SMC Society – Human-Machine Systems), Swinburne University of Technology, Australia Dr. Soheil Sabri

Co-Chair, Academia and Research Working Group, Digital Twin Consortium, Assistant Professor, Digital Twin Strategic Initiative, School of Modeling Simulation and Training, the University of Central Florida, USA

Workshop Program:

8:30 – 9:00 Arrival and Registration 9:00 – 9:05 Opening

IEEE SMCS President or VP

9:05 – 9:10 Welcome Note: Director of IST

Prof. Grace Bochenek

Is the School of Modeling, Simulation, and Training Director at the University of Central Florida. Prior to joining UCF, Dr. Bochenek held a presidential cabinet appointment as Acting U.S. Secretary of Energy and earlier had a career of motivating research, and development in national security and energy, the private sector, and as a member of the federal government Senior Executive Service.

Recognized for her ability to anticipate and inspire technological innovation, Director Bochenek is endlessly fascinated by the potential of next generation technology, and the next generation who will wield it in the workforce.

Her past leadership roles included managing research and overseeing partnerships with universities as Director of the National Energy Technology Laboratory (NETL), serving as the Chief Technology Officer of the U.S. Army Materiel Command, and leading research and development as the Director of the Tank Automotive Research, Development and Engineering Center. She was awarded the Presidential Rank Award as Meritorious Executive, a Silver Medal from the National Defense Industry Association, and Decorations for Exceptional Civilian Service from both Departments of Army and Energy.

9:10 – 9:30 Opening Speech: Virtual work on Virtual Systems Using Virtual Reality

Professor Peter Hancock, Provost Distinguished Research Professor, the University of Central Florida (UCF)

Peter A. Hancock, D.Sc., Ph.D. is Provost Distinguished Research Professor in the Department of Psychology and the Institute for Simulation and Training, as well as at the Department of Civil and Environmental Engineering and the Department of Industrial Engineering and Management Systems at the University of Central Florida (UCF). In 2009 he was created the 16th ever UCF University Pegasus Professor (the Institution's highest honor) and in 2012 was named 6th ever University Trustee Chair. He directs the MIT² Research Laboratories. Prior to his current position he founded and was the Director of the Human Factors Research Laboratory (HFRL) at the University of Minnesota where he held appointments as Professor in the Departments of Computer

Science and Electrical Engineering, Mechanical Engineering, Psychology, and Kinesiology, as well as being a member of the Cognitive Science Center and the Center on Aging Research. He continues to hold an appointment as a Clinical Adjunct Professor in the Department of Psychology at Minnesota. He is also an affiliated Scientist of the Humans and Automation Laboratory at Duke University, a Research Associate of the University of Michigan Transport Research Institute, and a Senior Research Associate at the Institute for Human and Machine Cognition in Pensacola, Florida. He is also a member of the Scientific Advisory Board of the Hawaii Academy. 400

Professor Hancock is the author of more than 1,000 refereed scientific articles, chapters, and reports as well as writing and editing more than twenty books including: Human Performance and Ergonomics in the Handbook of Perception and Cognition series, published by Academic Press in 1999. Stress, Workload, and Fatigue published in 2001 by Lawrence Erlbaum and Performance under Stress which was published in 2008 by Ashgate Publishing. He is the author of the 1997 book, Essays on the Future of Human-Machine Systems and the 2009 text, Mind, Machine and Morality also from Ashgate Publishers. His more recent texts include the Cambridge University Press, Hoax Springs Eternal; The Psychology of Cognitive Deception and the Springer text: Transports of Delight: How Technology Materializes Human Imagination. In addition to his over 1,000 publications Dr. Hancock has also made over 1,000 professional presentations on issues as diverse as human-machine interaction, and psychological deception, to the history of the reign of Richard III. He has been continuously funded by extramural sources for every one of the thirty-eight years of his professional career. This includes support from NASA, NSF, NIH, NIA, FAA, FHWA, NRC, NHTSA, DARPA, NIMH, and all of the branches of US Armed Forces. He has also been supported by numerous State and Industrial agencies. He was the Principal Investigator on a Multi-Disciplinary University Research Initiative (MURI), in which he directed \$5 Million of funded research on stress, workload, and performance. It was the first MURI in behavioral science ever awarded by the US Army. He was also the recipient of the first ever research grant (as opposed to contract) given by the Federal Aviation Administration. To date, he has secured over \$20 Million in externally funded research during his career. He has presented, or been an author on, over 1,000 scientific presentations. In 1999 he was the Arnold Small Lecturer of the Human Factors and Ergonomics Society and in 2000 he was awarded the Sir Frederic Bartlett Medal by the Ergonomics Society of Great Britain for lifetime scientific achievement. He was the Keynote Speaker for the combined meeting of the International Ergonomics Association and the Human Factors and Ergonomics Society in 2000 in San Diego, the largest-ever professional meeting of the discipline.

9:30 – 9:50 VAR in Human-Machine Systems

Professor Carolina Cruz-Neira, Agere Chair Professor, Department of Computer Science, UCF

Dr. Cruz is the Agere Chair in Computer Science at the University of Central Florida. She is a member of the National Academy of Engineering and is a pioneer in virtual reality and interactive visualization, having created and deployed various technologies that have become standard tools in the industry, government, and academia. She is known worldwide for creating the CAVE virtual reality system. She has dedicated a part of her career to transferring research results into daily use by spearheading several open-source initiatives to disseminate and grow VR technologies and by leading entrepreneurial initiatives to commercialize research results. She has over

100 publications, such as scientific articles, book chapters, magazine editorials, and others. She has been awarded over \$75 million in grants, contracts, and donations. She is also recognized for having founded and led very successful virtual reality research centers: the Virtual Reality Applications Center at Iowa State University, the Louisiana Immersive Technologies Enterprise, and the Emerging Analytics Center at the University of Arkansas at Little Rock. She serves in many international technology boards, government technology advisory committees, and outside the lab, she enjoys extrapolating her technology research with the arts and the humanities through forward-looking public performances and installations. She has been named one of the top innovators in virtual reality and one of the top three greatest women visionaries in virtual reality. BusinessWeek magazine identified her as a "rising research star" in the next generation of computer science pioneers; she has been inducted as a member of the National Academy of Engineering, a member of the IEEE Virtual Reality Academy, an IEEE Fellow, and an ACM Computer Pioneer; She has received the IEEE Virtual Reality Technical Achievement Award and the Distinguished Career Award from the International Digital Media & Arts Society among other national and international recognitions. She had given numerous keynote addresses and has been the guest of several governments to advise on how virtual reality technology can help to give industries a competitive edge leading to regional economic growth. She has appeared in numerous national and international TV shows and podcasts as an expert on her discipline and several documentaries have been produced about her life and career.

9:50 - 10:10 Robot Team Establishment using E-CARGO/RBC

Professor Haibin Zhu, Department of Computer Science and Mathematics, Nipissing University, Canada

DR. Haibin Zhu is a Full Professor and the Coordinator of the Computer Science Program, the Founding Director of the Collaborative Systems Laboratory, a member of the Senate Research Committee, Arts and Science Executive Committee, Nipissing University, Canada. He is also an affiliate full professor at Concordia Univ. and an adjunct professor of Laurentian Univ., Canada. He has accomplished (published or in press) over 240+ research works, including 40+ IEEE Transactions articles, six books, five book chapters, four journal issues, and four conference proceedings. He is a fellow of I2CICC (International Institute of Cognitive Informatics and Cognitive Computing), a senior member of ACM and IEEE, a full member of Sigma Xi, and a life

member of CAST-USA (Chinese Association of Science and Technology, USA).

He is serving as Vice President - Systems Science and Engineering (SSE) (2023-), member-atlarge of the Board of Governors (2022-), and a co-chair (2006-) of the technical committee of Distributed Intelligent Systems of IEEE Systems, Man and Cybernetics (SMC) Society (SMCS). Associate Editor (AE) of IEEE Transactions on SMC: Systems (2018-), IEEE Transactions on Computational Social Systems(2018-), Frontiers of Computer Science (2021-), and IEEE Canada Review (2017-). He served as Editor-in-Chief of IEEE SMC Magazine (2022), AE of IEEE SMC Magazine (2015-2021), Associate Vice President (AVP), SSE (2021), IEEE SMCS, Program (Co-)Chair for many international conferences, and PC member for 130+ academic conferences.

He is the founding researcher of Role-Based Collaboration and Adaptive Collaboration and the creator of the E-CARGO model. His research monograph E-CARGO and Role-Based Collaboration can be found at https://www.amazon.com/CARGO-Role-Based-Collaboration-Modeling-Problems/dp/1119693063. The accompanying codes can be downloaded from GitHub: https://github.com/haibinnipissing/E-CARGO-Codes. He has offered 30+ keynote speeches for international conferences and 90+ invited talks internationally. He has received over CAD\$1M of grants from SSHRC, NSERC, IBM, DNDC, DRDC, and OPIC.

Abstract:

Hybrid Human/Robot teams are systems that include both humans and highly autonomous robots and they can be used in a wide range of applications, including surveillance, inspection, rescue, automation, and logistics. To establish such a hybrid team, the collaboration between agents in the team can quickly become a challenging problem, particularly when there is a dynamic environment including a variety of well-trained humans with different expertise, and robots with various hardware, software, battery life, size, and functionalities.

Hybrid team establishment introduces new requirements, new challenges, and new solutions to realworld problems. When many heterogeneous and autonomous robots and humans are organized as a team to accomplish a mission, evaluating each human/robot for each task and assigning proper tasks to each human/robot before acting is essential. Pertinent and dynamic task assignments can avoid failures in operation and increase operating efficiency while the humans and robots are executing their mission.

Role-Based Collaboration (RBC) is a computational methodology that uses role mechanisms to facilitate collaboration activities. RBC and its Environments - Classes, Agents, Roles, Groups, and Objects (E-CARGO) model have been developed into a powerful tool for investigating teamwork. Related research has brought and will bring exciting improvements to the development, evaluation,

and management of systems, including collaboration, services, clouds, productions, and administration systems.

E-CARGO/RBC has been verified by formalizing and solving significant problems in collaboration and complex systems, e.g., Group Role Assignment (GRA). With the help of E-CARGO, the methodology of RBC can be applied to solve various real-world problems. E-CARGO itself can be extended to formalize abstract problems as innovative investigations in research.

In this presentation, we examine the requirement of research on robot teams and collaboration, discuss RBC and its model E-CARGO; review the related research achievements on RBC and E-CARGO in the past years, including Group Role Assignment (GRA), GRA with Constraints (GRA+), and Adaptive Collaboration; analyze their connections with hybrid teams, and present initial simulations and experiments. The presenter welcomes queries, reviews, studies, applications, and criticisms.

10:10 – 10:30 Human-machine symbiosis using multimodal data for the development of human Digital Twins

Professor Roger Azevedo and Dr. Megan Wiedbusch, School of Modeling Simulation and Training, the University of Central Florida (UCF)

Dr. Azevedo is a Professor in the School of Modeling Simulation and Training at the University of Central Florida. He is also an affiliated faculty in the Departments of Computer Science and Internal Medicine at the University of Central Florida and the lead scientist for the Learning Sciences Faculty Cluster Initiative. His main research area includes examining the role of cognitive, metacognitive, affective, and motivational self-regulatory processes during learning with advanced learning technologies (e.g., intelligent tutoring systems, hypermedia, multimedia, simulations, serious games, immersive virtual learning environments). His overarching research goal is to understand the complex interactions between humans and intelligent learning systems by using

interdisciplinary methods to measure cognitive, metacognitive, emotional, motivational, and social processes and their impact on learning, performance, and transfer. To accomplish this goal, he conducts laboratory, classroom, and in-situ (e.g., medical simulator) studies and collects multichannel data to develop models of human-computer interaction; examines the nature of temporally unfolding self- and other-regulatory processes (e.g., human-human and human-artificial agents); and designs intelligent learning and training systems to detect, track, model, and foster learners, teachers, and trainers' self-regulatory processes.

Dr. Wiedbusch is a postdoctoral researcher at the School of Modeling, Simulation, and Training at the University of Central Florida (UCF) with Dr. Roger Azevedo. Her research is focused on the measurement of the dynamics of metacognition and engagement using traditional (i.e., self-reports) and unobtrusive multimodal (e.g., eye tracking, facial expressions, log files) methodological and analytical approaches across contexts (e.g., health care, K-12 education, teacher training) and learning environments (e.g., VR, simulations, ITS, and GBLEs). She conducts laboratory, classroom, and in-

situ studies to model human (meta)cognition and behavior during complex learning to inform the design of human-centered intelligent learning and training technologies.

Abstract: 10:30 – 11:00 Coffee Break

11:00 – 11:20Synthetic Population as Digital Twin Technology for Real-Scale Social SimulationsProfessor Tadahiko Murata, Cybermedia Center of Osaka University, Japan - IEEE Fellow

400

Dr. Tadahiko Murata is a Professor at Cybermedia Center of Osaka University, Japan. In Osaka University, he has classes in Division of Electronic and Information Engineering for undergraduate students and Graduate School of Information Science and Technology for graduate students. He was President of Japanese Society for Evolutionary Computation from 2020 to 2022. He is currently Vice President of Organization and Planning in IEEE SMC Society and Vice President in Japan Society for Fuzzy Theory and Intelligent Informatics. He is IEEE Fellow.

Abstract:

In order to realize the digital twin for communities or regions in the cyber space, we need to obtain information on household members in the target area. However, attributes such as age, school, workplace, and income of household members are their privacy, it is difficult to utilize them in a digital twin. Synthetic population method synthesize or generates those personal data only from publicly released statistics. In the pandemic of Covid-19, a lot of researcher synthesize those household information from the statistics and simulate Covid-19 spreading in the target region. In this talk, I show several application examples of synthetic population in Japan.

11:20 – 11:40 Virtual Learning Environments

Professor Charlie Hughes, Pegasus Professor, Department of Computer Science, UCF

Dr. Charlie Hughes is a Pegasus Professor of Computer Science at the University of Central Florida (UCF). He is Co-Lead of the Learning Sciences Cluster, Co-Director of the Synthetic Reality Laboratory SREAL), and Co-Director of the Center for Research in Education Simulation Technology (CREST). He has secondary appointments in Electrical and Computer Engineering, the School of Modeling, Simulation & Training, the College of Community Innovation & Education, and the Department of Games & Interactive Media at UCF. Charlie was recently inducted into the National Center for Simulation Hall of Fame. His virtual environment research spans three and a half decades, with the last 15 years focused on virtual learning environments (co-holder of 11 patents in this

area) with an emphasis on preparing teachers for inclusive classrooms and helping students with autism reach their full potentials. He has authored or co-authored 7 books, 68 journal articles, 38 book chapters, and 122 refereed conference papers. He has advised 28 students to completion of their Ph.D.'s in computer science and modeling & simulation, with women being eight of the last 13. He is a Life Senior Member of both the IEEE and the ACM and is an ACM SIGGRAPH Pioneer. He has been PI or co-PI on about \$30M in external grants since 2000, of which over \$6M in funding is currently active.

Abstract:

Virtual Learning Environments (VLEs) refer to the employment of extended reality (VR, AR, MR) in contexts that are intended to improve the performance of participants in some area of work, education, or job training, especially when these involve human to human interactions. This talk will discuss VLE research in support of the education of youth who have autism, and the efforts of people who interact with those on the spectrum (coaches, teachers, police officers). We will also discuss the use of real-time physiological data to influence the behavior of virtual character, especially virtual companions for children with autism.

11:40 – 12:00 Real-Time Battlefield Casualty Care Decision Support

Professor Christopher Nemeth, Principal Scientist, Applied Research Associates

Christopher Nemeth, PhD, CHFP, is a Principal Scientist with Applied Research Associates, a 2000 member national science and engineering consulting firm. His 26-year academic career has included seven years in the Department of Anesthesia and Critical Care at the University of Chicago Medical Center, and adjunct positions with Northwestern University's McCormick College of Engineering and Applied Sciences (Associate Professor), and Illinois Institute of Technology. He is a Fellow of both Applied Research Associates and the Design Research Society, a Life Senior

Member of the Institute of Electrical and Electronic Engineers (IEEE), and has served 8 years as a member of the IEEE Systems, Man and Cybernetics Society Board of Governors. He retired from the Navy in 2001 at the rank of Captain after a 30-year active duty and reserve career.

Abstract:

The Trauma Triage Treatment and Training Decision Support (4TDS) system is an operating prototype that provides real time casualty data and trend indications to medics and clinicians in austere battlefield settings. Using only six vital signs, machine learning models scan vital signs data to detect risk of internal hemorrhage, probability of need for massive transfusion, and likelihood of impending shock. Participatory design from initial development through field evaluation with 00 military medical professionals aligned 4TDS with needs to support Tactical Combat Casualty Cate (TCCC) and Prolonged Field Care (PFC).

12:00 – 12:45 Lunch Break

12:45 – 13:00 Readiness and Medical Solutions

Dr. Joseph Cohn, SoarTec

Dr. Joseph Cohn is SoarTech's Director for Readiness and Medical Solutions. In this role he focuses on applying SoarTech's human-centric AI to delivering capabilities that support the Joint medical force's ability to provide critical care across a range of threat environments.

A retired Navy Medical Service Corps Captain with a Neuroscience PhD, Joseph embraces high-risk research to deliver technologies that ensure the United States military maintains its technical edge over its adversaries. Throughout his career, he has developed and directed numerous biomedical and human systems-focused Research and Acquisition programs for the Navy, Joint Force and International

partnerships. Joseph oversaw a Joint team tasked with combining over \$3B in Service medical Research, Development & Acquisition assets into a single Defense Health Agency -led organization. As Deputy Director for Human, Performance and Biosystems, he co-led and managed a \$20M cognitive sciences and human performance international research collaboration through the U.S.– India Defense Technology and Trade Initiative. As a Program Officer at the Office of Naval Research, he led a Joint team in developing a capability for selecting Unmanned Aerial System (UAS) Operators, which directly informed the Navy's decision to establish their inaugural UAS Operator Community. As the Office of Naval Research's first Deputy Director for Naval Science, Technology, Engineering and Mathematics (STEM), he coordinated the Secretary of the Navy's \$180M STEM program with projects across all 50 states, reaching 200,000 students annually. While a Program Manager at DARPA, Joseph developed AI-based approaches that reduced the time to train and acquire expertise ten-fold, establishing a Navy-approved prototype training pipeline for new recruits based on this capability, with an estimated savings of \$50M/year.

Joseph has co-authored over 100 publications, co-edited three textbooks and chaired numerous panels and workshops, focusing on biomedical, human machine interaction and human performance-

enhancing technologies. He is a Fellow of the American Psychological Association and the Society of Military Psychologists as well as Associate Fellow, Aerospace Medical Association.

Panel:

13:00 – 13:30 Discussion for challenges and opportunities and ways forward for Academia, Government, and Industry Collaboration

Moderator: Ms. Eileen Smith

Panelists:

UCF IST, IEEE SMCS, Bill Hoffman (OMG Group, Digital Twin Consortium)

13:30 – 13:50 Quantifying extended human-plus-tool cognitive systems

Dr. Mary Jean Amon, Luis H. Favela, School of Modeling Simulation and Training, the University of Central Florida (UCF)

Dr. Mary Jean Amon is an Assistant Professor in the School of Modeling, Simulation, and Training at the University of Central Florida. She holds an M.A. and Ph.D. in Experimental Psychology from the University of Cincinnati, as well as an M.A. in Psychology in Education from Teacher's College, Columbia University. Before joining UCF, she was a Postdoctoral Researcher in the Department of Psychological and Brain Sciences at Indiana University Bloomington, and then a Research Associate in the Institute of Cognitive Science at the University of Colorado Boulder. Her interdisciplinary research is informed by topics in cognitive science, computer science, and data science and centers on user-oriented research aimed toward optimizing decision-making and

performance in the context of complex socio-technological systems. This includes augmenting our understanding of teamwork by identifying coordinative patterns and features of socio-technical tasks that enhance performance, as well as how the dynamics of human-computer interaction inform issues associated with online privacy. She has published in venues such as AIED, CHI, Cognitive Science, Communication Monographs, CSCW, ICMI, S&P, LAK, and ACM HEALTH. Her work has also been covered by ACM Tech News, Forbes, Inside Higher Ed, Washington Post, and Yahoo! news, among others.

Dr. Luis H. Favela is an Associate Professor of Philosophy and Cognitive Sciences at the University of Central Florida. He is a Fellow with the Research Corporation for Science Advancement and has held fellowships at University of Pittsburgh's Center for Philosophy of Science, and Duke University's Summer Seminars in Neuroscience and Philosophy. He earned his Ph.D. in Philosophy (Life Sciences Track) at the University of Cincinnati, where he concurrently earned a Master's in Experimental Psychology. Prior to Cincinnati, he earned a

Master's in Philosophy at San Diego State University and a Bachelor's in English and Philosophy at the University of San Diego. His research is interdisciplinary, situated at the intersections of the cognitive sciences, experimental psychology, and the philosophies of mind and science.

Abstract:

An empirically supported methodological and theoretical framework is presented for quantifying the dynamics of human-plus-tool cognitive systems. Participants provided perceptual judgments regarding the affordance pass-through-ability of apertures of varying widths while using vision,

blindfolded wielding a rod, and blindfolded wielding an Enactive Torch (a vibrotactile sensorysubstitution device). Human-plus-tool movement dynamics were assessed via fractal, multifractal, and recurrence quantification analyses. Trials where participants utilized the rod or Enactive Torch demonstrated stable "self-similarity," an indicator of adaptive and healthy single systems, regardless of aperture width, features of the participants' judgments, participant characteristics, and trial order. Trials with the Enactive Torch exhibited slightly greater range of dynamic fluctuations than the rod trials, as well as less movement recurrence, which suggests that the Enactive Torch allowed for more fine-grained exploratory movements. Notably, although participants were more confident with visual judgments, they were significantly more accurate with tool-assisted haptic judgments. Findings provide support for the notion that human-plus-tool systems can be classified as extended cognitive systems and a framework for quantifying system-level properties of these systems.

13: 50 – 14:10 Interaction-Centered Design: Frontier of Human-Autonomy/AI Teaming

Dr. Ming Hou, Senior Defence Scientist with Defence Research and Development Canada

Dr. Ming Hou (Senior Member, IEEE) received the Master's degree in materials engineering from Harbin Institute of Technology, China, in 1995, and the Ph.D. degree in human factors engineering from the University of Toronto, Ontario, Canada, in 2002. He is currently a Senior Defence Scientist with Defence Research and Development Canada and the Principal Authority of Human-Technology Interactions with the Department of National Defence (DND), Canada. He is responsible for providing science-based advice at national and international levels to the Canadian Armed Forces (CAF) and coalition partners about the investment in and application of advanced technologies for humanmachine systems requirements. He is an Integrator for the Canadian government

16 billion IDEaS Program and one of the three Scientific Advisors to the Canadian National Centre of Expertise in Human Systems Performance with responsibilities for guiding national research and development activities in automation, robotics, and telepresence. He also gives advice for the development of National Defence AI Science and Technology Strategy and Roadmap to the CAF and DND. He is the Co-Chair of Human Factors Specialist Team within NATO Joint Capability Group on Unmanned Aircraft Systems (UAS). His book Intelligent Adaptive Systems: An Interaction-Centered Design Perspective became a guiding document to the development of NATO Standard Recommendations on UAS Human Systems Integration Guide book, UAS Human Factors Experimentation Guidelines and UAS Sense and Avoid Guidance. As one of the four invited lecturers, he delivers NATO Lecture Series on UAVs: Technological Challenges, Concepts of Operations, and Regulatory Issues. He is also the chair and a board member of multiple international associations/programs.

Abstract:

This presentation highlights a few priority areas in Human-Machine Teaming identified by two most recent survey results on the topic (Canadian Government and NATO stakeholders).

14: 10 – 14:30 Automated Collaborative Problem-Solving through Dialogues between Specialized Large Language Models

Dr. Sean Mondesire, School of Modeling Simulation and Training, the University of Central Florida (UCF)

Dr. Sean Mondesire is an Assistant Professor at the University of Central Florida's (UCF) School of Modeling, Simulation, and Training (SMST). He is a part of the Knights Digital Twin Initiative, directs the Humancentered Artificial Intelligence Laboratory (HAIL), and co-directs UCF's Advanced Research Computing Center (ARCC) for high-performance computing. His research specialties are machine learning and big data analytics for real-time recommender systems and autonomous decision-making at scale.

Abstract:

This presentation examines the use of Large Language Models (LLMs) in dialogic self-play for complex problem-solving. By assigning specialized roles to each LLM, we explore their capacity to tackle logic puzzles and improve NPCs in serious gaming. We focus on the efficiency of these AI dialogues in discovering innovative solutions and research questions, highlighting minimal humanin-the-loop approaches. This method demonstrates significant time-saving and creative potential, offering new insights into autonomous AI collaboration and its impact on advancing AI research and applications.

14:30 – 14:50 Robotic Guide Dog to Aid Visually Impaired Individuals Navigate Unfamiliar Areas

Dr. Crystal Maraj, School of Modeling Simulation and Training, the University of Central Florida (UCF)

Dr. Crystal S. Maraj is a Research Assistant Professor employed by the School of Modeling Simulation and Training (SMST), Institute for Simulation and Training (IST) at the University of Central Florida (UCF). She has attained her Bachelor's degree in Psychology, as well as her M.S. and Ph.D. in Modeling and Simulation (M&S) from UCF. Dr. Maraj has worked for the Simulation & Training Technology Center (STTC) as an experimental psychologist on medical simulation technology projects as well as developing and implementing empirically based research experiments for Simulation-Based Training (SBT) platforms. Most recently, she is leading the Realistic Assessment of Performance in Devices (RAPID) lab that focuses on the evaluations of VR/AR technologies

assessing capabilities, deficiencies, specifications, costs, maturity, and risks. She also serves at the Faculty Advisor to the Robotics Club of Central Florida and lead STEM-based initiatives for IST. Dr. Maraj has published research findings to inform the scientific and training communities to improve trainee performance and training system utility.

Abstract:

This research investigates the implementation of a robotic guide dog to aid people with visual impairments. The study specifically focuses on the human participant's subjective attitude towards and opinions about the robotic dog. The feasibility of a robotic guide dog is partially determined by how humans will react to the idea of such technology being implemented in daily activity. The study will require the participants to complete three walks, guided by Tape measure, through set paths of varying difficulty while blindfolded to simulate visual impairment. Subjective assessment will involve pre- and post-test surveys to gauge human attitudes toward the robot. This effort offers an understanding of human-robot interaction, improving the robotic guide dog framework and proposing a modern alternative for assisting the visually impaired.

14:50 – 15:20 Coffee Break

15:20 – 15:40Trust and Risk at the Intersection of Human–Machine Systems - (Online – Australia)Associate Professor Simon Reay Atkinson, Captain in the Royal Australian Navy

400

Associate Professor Simon Reay Atkinson is a Captain in the Royal Australian Navy with extensive international experience, including in the US, Middle East, South West Asia, and NATO. He is currently serving as the Principal Investigator (PI) RAAF Air Command, Preparedness, Innovation & Improvement. Twice mentioned in despatches, innovative problem solving has been a highlight throughout a wide array of career experiences. A first degree in engineering was combined with a second degree (a research-based Cambridge University MPhil) in International Relations majoring in Law and Economics. This provided the foundation for a PhD (CUED) which examined, through engineering and social science lenses, complex systems and human factors / organisational modelling

including with regard to cyber, quantum, risk and resilience. The underlying strength of research has been its applicability and re-use; allowing for re-interpretation and practical application. Including as Chief of Staff of the Defence Response to Covid at Joint Task Force 629 – responsible also for domestic operations, fires and floods.

Abstract:

My talk will first set out the scientific and technological context we face today – described as the Synethical Age, fusing Quantum Computing, with AI (QAIC), with nanotechnology (QAINT). Each scientific age last about 45 years – the juncture between previous and succeeding ages is typified by period of instability and [radical] uncertainty (Keynes, 1921/6). As between the Turbine Age (1885-1929) and the Industrial Age (1930-1974), and the Industrial Age and the Information Age (1975-2020). Hitherto "knowledge could be described as being human and infotechnological" noting the indivisibility of information and technology, typified by the end of Information Age. The synthesis of QAIC with the infotechnological has the potential of displacing the human. Where knowledge may no longer be existential, but Interstitial - "scripted knowledge forming, or occupying only at the interstices between data and information" (SRA, 2023). Command and Control (Leadership & Management) is at the core of organisational designs – reflecting an organisation's unique culture (knowledge) and ontology (language). Command and Control is intended to enable Decision Making and Taking, or DMT. Where the effective ability to solve complex problems is indicative also of the health of an organisation - with the variety of ideas/views/opinions/skills (exercised through Command and Control) allowing for complex problem solving. This has ethical and moral implications – where morality is inherently human. Command (and leadership) is also related to trust and agility; whereas control (and management) is related to rules and fidelity. Trusts are vested in human values and morality - based upon social (existential) knowledge. Whereas humans might trust robots, or ChatGPT, does the reverse apply? What is the relationship between Risk and Trust, for example. If the robot/machine-system cannot trust the human, does that give rise to infinite risk? This talk will consider organisational agent-based human modelling to consider zerotrust designs. It will consider where a new knowledge may interstist with respect to existential knowledge - raising questions of trust, risk, morality, and ethical applications in organisational designs.

15:40 – 16:00 IEEE Transactions on Human-Machine Systems

Professor Ljiljana Trajkovic, School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada

Ljiljana Trajkovic received the Dipl. Ing. degree from University of Pristina, Yugoslavia, the M.Sc. degrees in electrical engineering and computer engineering from Syracuse University, Syracuse, NY, and the Ph.D. degree in electrical engineering from University of California at Los Angeles. She is currently a professor in the School of Engineering Science, Simon Fraser University, Burnaby, British Columbia, Canada. Her research interests include communication networks and dynamical systems. She served as IEEE Division X Delegate/Director, President of the IEEE Systems, Man, and Cybernetics Society, and President of the IEEE Circuits and Systems Society. Dr. Trajkovic serves as Editor-in-Chief of the IEEE Transactions on Human-Machine

Systems and Associate Editor-in-Chief of the IEEE Open Journal of Systems Engineering. She served as a Distinguished Lecturer of the IEEE Circuits and System Society and a Distinguished Lecturer of the IEEE Systems, Man, and Cybernetics Society. She is a Fellow of the IEEE.

16:00 - 16:05**Concluding Remarks and Workshop Wrap-Up**

Professor Saeid Nahavandi ; Dr. Soheil Sabri

16:05 - 17:00Lab Tour - In-Person Only

- 1. VAR Lab
- 2. E2i Creative Studio
- 3. SENSEable Design Laboratory

17:00 Assembling of the IEEE SMCS team at the Parking Partnership III

For registration, RSVP before 13 February:

https://ucf.qualtrics.com/jfe/form/SV_42RDbK1xsATISMm

Workshop Sponsors:

Urban Digital Twin Lab

Contact:

Soheil Sabri, Ph.D.

Assistant Professor | **Digital Twin Strategic Initiative** Director | **Urban Digital Twin (UDT) Lab** 3100 Technology Parkway, Suite 329 | Orlando, FL 32826 858.306.2796 | <u>soheil.sabri@UCF.edu</u>